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ABSTRACT
Sponsored search is one of the enabling technologies for to-
day’s Web search engines. It corresponds to matching and
showing ads related to the user query on the search engine
results page. Users are likely to click on topically related ads
and the advertisers pay only when a user clicks on their ad.
Hence, it is important to be able to predict if an ad is likely
to be clicked, and maximize the number of clicks. We inves-
tigate the sponsored search problem from a machine learning
perspective with respect to three main sub-problems: how
to use click data for training and evaluation, which learning
framework is more suitable for the task, and which features
are useful for existing models. We perform a large scale
evaluation based on data from a commercial Web search en-
gine. Results show that it is possible to learn and evaluate
directly and exclusively on click data encoding pairwise pref-
erences following simple and conservative assumptions. Fur-
thermore, we find that online multilayer perceptron learning,
based on a small set of features representing content similar-
ity of different kinds, significantly outperforms an informa-
tion retrieval baseline and other learning models, providing
a suitable framework for the sponsored search task.

Categories and Subject Descriptors
H.3 [INFORMATION STORAGE AND RETRIEVAL];
H.3.5 [Online Information Services]: Commercial ser-
vices; I.5 [PATTERN RECOGNITION]; I.5.1 [Models]:
Neural Nets; I.5.2 [Design Methodology]: Classifier de-
sign and evaluation

General Terms
Algorithms, Design, Experimentation

Keywords
Sponsored search, ranking, online learning, perceptrons

1. INTRODUCTION
Sponsored search is the task of placing ads that relate

to the user’s query on the same page as the search results
returned by the search engine. Typically sponsored search
results resemble search result snippets in that they have a
title, and a small amount of additional text, as in Figure 1.
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When the user clicks on the title he is taken to the landing
page of the advertiser. Search engine revenue is generated
in large part by the sponsored results. Of the $16.9 billion
generated by online advertising in 2006, 40% was generated
by search advertising [12]. Clearly it is an advantage to the
search engine to provide ads users will click.

While the final ranking takes into account the amount
bidded by the advertiser and, more generally, the micro-
economic model adopted by the search engine to maximize
revenue, relevance, or quality of the ads returned is a crucial
factor. Users are more likely to click ads that are relevant
to their query. In fact, there is evidence that the level of
congruence between the ad and its context has a significant
effect even in the absence of a conscious response such as
a click [34]. If we assume that congruency equates to topi-
cal similarity or “relevance”, the task is to show the ads that
are most similar to the user’s query in the sponsored results.
With this in mind we would like to place ads in the sponsored
results that are a good match for the user’s query. In this
paper we abstract from the economic aspects of the problem
and focus on the issue of improving the quality of the ads
proposed as relevant to the query. Information about the
quality of match at the content level can be taken into ac-
count later, including the micro-economic model, to compile
the final list of ads to be displayed. While the publisher goal
is maximizing profit, we stress the fact that maximizing ads
quality or relevance is a crucial factor in this process.

Aside from the difficulties in assessing the similarity of an
ad to a query that stem from the sparseness of the repre-
sentation of both the query and the ad, the task of placing
ads is complicated by the fact that users click on ads for a
wide variety of reasons that are not reflected in the simi-
larity of an ad to a query. For example, there is a strong
positional bias to user clicks. Users are much more likely to
click on items at the top of a ranked list of search results
than items lower in the ranking [11, 14]. This makes us-
ing the click data to learn a ranking function over the ads
and to evaluate the system more difficult. Specifically, user
clicks are not an indication of absolute relevance. Rather,
as Joachims proposed [13], the user click mainly indicates
the clicked item is more relevant than the those items which
were ranked higher but were not clicked. This observation
implies that positive and negative examples can be extracted
from query logs in a meaningful way, avoiding the complex-
ities and noise of click-through rate estimation. Building on
Joachims’ suggestion we create a training set from the query
logs of a real sponsored search system.

We propose that this type of data can be also used directly
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Figure 1. Example of sponsored search advertisements on the search engine results page of Yahoo! for the query “Beijing 2008”.
Ads are shown on the right side under the label “SPONSOR RESULTS”.

for evaluating a learning model. A few studies have already
shown that click feedback from users can be used to improve
machine learned ranking [32, 1]. However, this type of infor-
mation has not been used for both training and evaluation.
Previous work [32, 1] has ultimately relied on editorial data
for evaluation. We show that consistent results are obtained
in this way across different ranking methods and different
feature sets.

We formulate the problem of ranking a set of ads given a
query as a learning task and investigate three learning meth-
ods of increasing complexity based on the perceptron algo-
rithm: a binary linear classifier, a linear ranking model and
a multilayer perceptron, or artificial neural net. Specifically,
we focus on online learning methods which suit the task of
learning from large amounts of data, or from a stream of
incoming feedback from query logs. As hoped, we find that
accuracy increases with the complexity of the model.

Retrieving ads is complex in part because the text is sparse.
In addition, features based on link structure that have been
shown to benefit retrieval in a Web setting cannot be applied
to ads because they lack an obvious link organization. Ex-
ploiting our setup we investigate several classes of features
which have been proposed recently for content match, the
task of ranking ads with respect to the context of a Web
page, rather than a query. We start from the cosine simi-
larity between query and ad. We decompose the ad and use
as features the similarity of individual components of the ad
and the query, and also properties of the degree of overlap-
ping between the query and the ad [25]. Next we investi-
gate a class of language-independent, knowledge free, fea-
tures based on the distributional similarity of pairs of words
which have been used successfully in content match [6], and
can be extracted from any text collection or query log. These
features measure the similarity between two texts indepen-
dently of exact matches at the string level and are meant
to capture indirect semantic associations. In content match
there are many words that can be extracted from a Web
page to compute such features, while in sponsored search
there are only the terms in the query. We show that across
all learning methods these features produce the best results.

Overall, with a compact set of just twelve features we im-
prove significantly over all traditional models.

This paper presents the following primary contributions.
First, we show that click-data can be used directly for evalu-
ation purposes which is a desirable property in the context of
large scale systems that otherwise have to rely exclusively
on editorial data, or carry out noisy estimations of click-
through rates. Second, we show empirically that different
methods of increasing complexity can be applied to the task
and generate consistent results. This is important because
it supports the hypothesis that the evaluation is consistent
across different methods. On the learning side, it also shows
that taking into account pairwise information in training
is beneficial in machine-learned ranking, even in noisy set-
tings. Finally, we provide empirical evidence on the utility
of a class of simple features for ranking ads based on lexi-
cal similarity measures, which has possible applications to
other query-based ranking tasks such as document retrieval
and search in general.

The rest of the paper is organized as follows. In Section 2
we introduce the method for unbiasing click logs. Section 3
introduces several approaches to learning from click data for
sponsored search. Section 4 describes the features evaluated
in our experiments, which are discussed in Sections 5 and 6.
Section 7 provides an overview of related work.

2. CLICK DATA
Employing user clicks to train and to evaluate a sponsored

search system is a natural choice, since the goal in sponsored
search is maximizing the number of clicks. However, user
clicks cannot be used in a straight-forward manner because
they have a strong positional bias [11, 14], and they only
provide a relative indication of relevance [13]. There is a
strong positional bias as highly ranked results or ads may
be clicked because of their rank and not their relevance. For
example, a user may click on the top ranked ad and then
click on the third ad in the ranking, even if the third ad
may be more relevant to his query. The reason for this bias
is that users are likely to sequentially scan the ranked list of
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Figure 2. Illustrative example of how blocks are generated from
the clicked and non-clicked ads for a query.

items and may click on an item before scanning the whole
list, or may never scan the whole list at all.

To investigate how to employ user clicks to train and eval-
uate a sponsored search system, we have collected a set of
queries and the ads that had been shown with them on
the right-hand side of the search engine results page, from
the logs of the Yahoo! Web search engine. We sampled
queries until we collected a sufficiently large number of dis-
tinct clicked ads. We sampled only queries with three or
more query terms because longer queries are more likely to
lead to higher conversion rates [24]. In other words, users
issuing longer queries are more likely to visit a Web site and
perform a transaction. We also considered only one click for
a query-ad pair from one user per day.

Following Joachims [13], we make a conservative assump-
tion that a click can only serve as an indication that an ad
is more relevant than the ads ranked higher but not clicked,
but not as an absolute indication of the ad relevance. In this
setting, the clicks on the top ranked ad do not carry any in-
formation, because the top ranked ad cannot be ranked any
higher. In other words, there is no discriminative pairwise
information associated with a click at position one. Hence,
we do not consider such clicks in the remainder of our exper-
iments. For each clicked ad, we create a block which consists
of the clicked ad and the non-clicked ads that ranked higher,
for a total of 123,798 blocks. In each block, we assign a score
of “+1”to the clicked ad and“-1”to the ads that were ranked
higher but were not clicked.

Figure 2 shows an example of the score assignment pro-
cess. On the left-hand side of the figure, we show the ranking
of six ads for a query. The ellipses around ads a1, a3 and
a5 denote that these ads were clicked by the user who sub-
mitted the query. The “gold-standard” blocks of ads, shown
on the right-hand side of the figure, are generated in the
following way. First we ignore the click on ad a1 since this
ad was already ranked first and it was clicked. Then, we
form one block of ads with a2 and a3, assigning scores of
“-1” and “+1”, respectively. Next, we form a second block
of ads consisting of a2, a4, a5 with scores “-1” and a6 with
score “+1”. In Figure 2 blocks of ads are shown with shaded
areas.

From the example above we obtain two gold standard
blocks from one user session. Alternatively, one could gener-
ate a single vector of binary values including all the positive
and negative examples. One potential problem is that in

such a way one introduces effectively an equivalence of rele-
vance between clicked ads (positive points), while according
to our conservative assumption we cannot really say any-
thing about the relative relevance of two clicks in different
blocks, because we do not have reliable means of interpret-
ing clicks in an absolute way. As a matter of fact, in some
of the ranking models we propose (classification and multi-
layer perceptron) the block structure is effectively ignored
in training. However training on local pairwise preferences
can be beneficial, as we show in the experimental section
going from a global binary classification model to a ranking
model which exploits the block structure. The block-based
encoding is compatible with both approaches and defines a
robust and intuitive learning task.

3. LEARNING MODELS
Learning with clicks can involve arbitrarily large amounts

of data, or even learning from a continuous stream of data.
Online learning algorithms are the most natural choice for
this type of task, since the data need not be considered (or
stored in memory) all at once; each pattern is used for learn-
ing in isolation. Notice how learning from blocks fits per-
fectly online learning in that any feedback can be immedi-
ately used to update the current model, even when a query
or ad is observed for the first time, without the need to accu-
mulate evidence for reliable estimate of click-through rates.
As a general online learning framework we choose the per-
ceptron algorithm. The perceptron was invented by Frank
Rosemblatt in 1958 [26], and was initially criticized because
of its inability to solve non-linear problems [22]. In fact, the
perceptron, like support vector machines (SVM) and other
methods, can learn non-linear models by means of kernel
functions in dual algorithms, or by means of higher-order
feature mappings in the primal form, or again (see below
Section 3.3) by means of multilayer architectures.

The perceptron has received much attention in recent years
for its simplicity and flexibility. Among other fields, the per-
ceptron is popular in natural language processing, where
it has been successfully applied to several tasks such as
syntactic parsing, tagging, information extraction and re-
ranking [7, 29, 30, 31]. We preferred the perceptron over
other popular methods, such as SVM, for which incremental
formulations have been proposed [5, 17], because accurately-
designed perceptrons (i.e., including regularization, margin
functions, etc.) often performs as well as more complex
methods at a smaller computational cost. Moreover, the
simplicity of the algorithm allows easy customization, which
is crucial in large scale settings. In Section 3.4, we bench-
marked one of our perceptron models on a ranking task,
yielding results comparable to SVM and Boosting.

We investigate three approaches to learning to rank ads
based on click data: classification, ranking, and non-linear
regression. The general setting involves the following ele-
ments. A pattern x ∈ IRd is a vector of features extracted
from an ad-query pair (a, q). Each pattern xi is associated
with a response value yi ∈ {−1, +1}. In classification we as-
sociate a vector for a pair which has not been clicked with -1,
also referred to as class y0, and a vector for a pair which has
been clicked with +1, also referred to as class y1. The goal
of learning is to find a set of parameters, or weights, α used
to assign a score F (xi; α) to patterns such that F (xi; α) is
close to the actual value yi. In particular, we are interested
in predicting the clicked ad in a block of ads.
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3.1 Classification
In a classification framework the goal is to learn a function

which is able to accurately assign a pattern to either the
clicked or non-clicked class. Patterns in the data are used
independently of one another in training and the classifier
simply finds a weight vector which assigns each pattern to
the correct class1. After training, the classifier can be used
to rank ads given a query; e.g., to identify the most likely
clickable pattern in a block.

The basic classifier is a binary perceptron. We extend
the basic model by averaging and adding an uneven mar-
gin function. Averaging is a method for regularizing the
classifier by using – for prediction after training – the av-
erage weight vector of all perceptron models posited during
training [10]. The uneven margin function is a method for
learning a classifier with large margins for cases in which the
distribution of classes is unbalanced [20]. Since non-clicked
ads are more numerous than clicked ads we face an unbal-
anced learning task. The uneven margin function pushes
learning towards achieving a larger margin on the positive
class. The binary perceptron uses the sign function as a
discriminant:

F (x;α) = Sgn(〈x, α〉) (1)

We learn α from the training data. The model has two
adjustable parameters. The first is the number of instances
T to use in training, or the number of passes (epochs) over
the training data. The second concerns the uneven margin
function, for which we define a constant τ1 used in training
to define a margin on the positive class. While training, an
error is made on a positive instance x if F (x; α) ≤ τ1; the
parameter on the negative class τ0 = 0 and is effectively
ignored. The learning rule is:

α
t+1 = α

t + yixi (2)

The ranking function defined on the binary classifier is
simply the inner product between the pattern and the weight
vector:

Sapm = 〈x, α〉 (3)

In evaluation, we use this score to rank ads in each block.

3.2 Ranking
Another way of modeling click feedback is directly as a

ranking problem. For this purpose we implement the rank-
ing perceptron proposed by Shen and Joshi [30], which re-
duces the ranking problem to a binary classification prob-
lem. The general objective is to exploit the pairwise prefer-
ences induced from the data by training on pairs of patterns,
rather than independently on each pattern. Let Rb be a set
of pairs of patterns for a block b, such that (xi,xj) ∈ Rb ⇐⇒
r(yi) < r(yj), where r(yi) is the rank of xi in b; i.e., in our
case, either yi = 1 and r(yi) = 1, or yi = −1 and r(yi) = 2.

Given a weight vector α, the score for a pattern x is again
the inner product between the pattern and the weight vector:

Srnk = 〈x, α〉 (4)

However, the error function depends on pairwise scores. In
training, for each pair (xi,xj) ∈ Rb, the score Srnk(xi −
1Under the assumption that the training data is separable,
i.e., there exists an hyperplane which correctly classifies all
data points.

Figure 3. Examples of decision boundaries that can be learned
by the linear, on the left, and non-linear models, on the right,
in a two-dimensional case. X denotes positive (clicked) pat-
terns while circles denote negative (non-clicked) patterns. The
linear classifier depicted on the left correctly classifies the posi-
tive examples, but misclassifies a negative one. The non-linear
classifier can find complex decision boundaries to solve such
non-linearly separable cases.

xj) is computed. Given a margin function g and a positive
learning margin τ , if Srnk(xi − xj) ≤ g(r(yi), r(yj))τ , an
update is made as follows:

α
t+1 = α

t + (xi − xj)g(r(yi), r(yj))τ (5)

In particular, because the discriminant function is an inner
product, Srnk(xi − xj) = Srnk(xi) − Srnk(xj). By default
we use g(i, j) = ( 1

i
− 1

j
) as a margin function as suggested

in [30]. Although there are only two possible ranks in our
setting, the hope is that training on pairs provides more
information than training on patterns in isolation. For reg-
ularization purposes, averaging is applied also to the ranking
perceptron.

3.3 Multilayer Regression
One possible drawback of the previous methods is that

they are limited to learning linear solutions. To improve the
expressive power of our ranking functions, within the online
perceptron approach, we experimented also with multilayer
models. The topology of multilayer perceptrons includes
at least one non-linear activation layer between the input
and the output layers. Multi-layer networks with sigmoid
non-linear layers can generate arbitrarily complex contigu-
ous decision boundaries [8], as shown in Figure 3, and have
been used successfully in several tasks, including learning
to rank [3]. The multilayer perceptron is a fully connected
three-layer network with the following structure:

1. Input layer: d units x1, x2, .., xd + a constant input
x0 = 1

2. Hidden layer: nH units w1, w2, .., wnH
+ a constant

weight w0 = 1

3. Output layer: one unit z

4. Weight vector: α2 ∈ IRnH + a bias unit α2
0

5. Weight matrix: α1 ∈ IRd×nH + a bias vector α1
0 ∈

IRnH

The score Smlp(x) of a pattern x is computed with a feed-
forward pass:

Smlp(x) = z =

nH
X

j=1

α
2
jwj + α

2
0 = 〈α2

,w〉 (6)
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where wj = f(netj), and

netj =
d

X

i=1

α
1
ijxi + α

1
0 = 〈α1

j ,x〉 (7)

The activation function f(.) of the hidden unit is the sig-
moid:

f(net) =
1

1 + exp−a net
. (8)

Supervised training begins with an untrained network with
randomly initialized parameters. Training is carried out
with backpropagation [27]. An input pattern xi is selected,
its score computed with a feedforward pass and compared to
the true value yi. Then the parameters are adjusted to bring
the score closer to the actual value of the input pattern. The
error E on a pattern xi is the squared difference between the
guessed score Smlp(xi) and the actual value yi of xi, or for
brevity (yi − si); thus E = 1

2
(yi − si)

2. After each iteration

t, α is updated component-wise to αt+1 by taking a step in
weight space which lowers the error function:

α
t+1 = α

t + △α
t (9)

= α
t − η

∂E

∂αt

where η is the learning rate, which affects the magnitude, or
speed, of the changes in weight space. The weight update
for the hidden-to-output weights is:

△α
2
i = −ηδwi (10)

where δ = (yi−zi). The learning rule for the input-to-hidden
weights is:

△α
1
ij = −ηxjf

′(netj)α
1
ijδ. (11)

where f ′ is the derivative of the non-linear activation func-
tion.

3.4 Benchmark on a public dataset
A full comparison of the methods presented here with

other methods on information retrieval tasks is beyond the
scope of the paper. However, to get an estimate for the
accuracy of the methods we implemented, we evaluated the
ranking perceptron (see Section 3), on the Letor dataset [21].
On all evaluation metrics the ranking perceptron achieves
scores comparable to SVM on the OHSUMED and TD2003
datasets, and comparable to RankBoost on TD2004. Thus
in line with the best method in each dataset. The mul-
tilayer perceptron outperforms the ranking perceptron on
exploratory runs, but we did not carry out extensive com-
parisons in this context.

4. FEATURES
A range of features, from simple word overlap and textual

similarity features to statistical association between terms
from the query and the ads, are used for learning a ranking
model. In particular, we are interested in finding features
which helps in the face of sparse data, as ads are character-
ized by small amounts of text.

4.1 Word Overlap
We compute four features that assess the degree of overlap

between the query and the ad materials. The first feature

has a value of one if all of the query terms are present in the
ad:

if (∀t ∈ q)t ∈ a, F1 = 1, and 0 otherwise. (12)

The second feature has a value of one if some of the query
terms are present in the ad:

if ∃t ∈ q such that t ∈ a, F2 = 1, and 0 otherwise. (13)

The third feature has a value of one if none of the query
terms are present in the ad:

if ¬∃t ∈ q such that t ∈ a, F3 = 1, and 0 otherwise. (14)

The fourth feature is the percentage of the query terms that
have an exact match in the ad materials.

Prior to computing the features, both the query and the ad
were normalized for case. For the purpose of word overlap,
we chose to stem and stop less aggressively than we would
do with functions that are smoothed. For this reason we
used a Krovetz stemmer [18], and only single characters were
removed.

4.2 Cosine similarity
We compute the cosine similarity sim(q, a) between the

query q and the ad a as follows:

sim(q, a) =

P

t∈q∩a
wqtwat

q

P

t∈q
w2

qt

q

P

t∈a
w2

at

(15)

where the weight wt of a term in q or a corresponds to the
tf − idf weight:

wt = tf · log2

N + 1

nt + 0.5
(16)

In Equation (16), tf is the frequency of a term in q or in a.
When considering queries q, tf is expected to be uniformly
distributed with one being the most likely value, because
terms are not likely to be repeated in queries. In addition,
N corresponds to the total number of available ads and nt

corresponds to the number of ads in which term t occurs.
The tf − idf weight wat of term t in a is computed in

the same way. We have also computed the cosine similarity
between q and each of the fields of the ads, that is, the ad
title at, the ad description ad and its bidded terms ab. In
all cases, we have applied Porter’s stemming algorithm and
we have removed stop words.

Cosine similarity has been used effectively for ranking ads
to place on Web pages in the setting of contextual adver-
tising [25, 6]. A difference with our setting is that in the
case of contextual advertising, the cosine similarity is com-
puted between the Web page and ad. While there are more
complex similarity functions that have been developed and
applied for the case of computing the similarity between
short snippets of text [28], we use cosine similarity because
it is parameter free and inexpensive to compute.

4.3 Correlations
Queries and ads are both short snippets of text, which

tend not to have a high vocabulary overlap. To address this
issue, and exploit additional information from non-matching
terms, we consider two features based on measuring the sta-
tistical association of terms from an external corpus.
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Feature Name Abbrev. Description

Word Overlap Features

NoKey

O

1 if no query term is present in the ad materials; 0 otherwise
SomeKey 1 if at least one query term is present in the ad materials; 0 otherwise
AllKey 1 if every query term is present in the ad materials; 0 otherwise

PercentKey The number of query terms present in the ad materials
divided by the number of query terms
Cosine Similarity Features

Ad B The cosine similarity between the query and the ad materials (baseline)
Title

F
The cosine similarity between the query and the ad title

Description The cosine similarity between the query and the ad description
Bidterm The cosine similarity between the query and the bidded terms

Correlation Features

AvePMI
P

The average pointwise mutual information between terms in the query and terms in the ad
MaxPMI The maximum pointwise mutual information between terms in the query and terms in the ad

CSQ C Number of query-ad term pairs that have a χ2 statistic in the top 5% of computed χ2 values.

Table 1. Summary of features. The column“Abbrev.” provides an abbreviated name for one or more features, as they will be used
in the experiments.

4.3.1 Pointwise Mutual Information
One measure of association between terms is pointwise

mutual information (PMI). We compute PMI between terms
of a query q and the bidded terms of an ad a. PMI is based
on co-occurrence information, which we obtain from a set of
queries submitted to the Yahoo! search engine:

PMI(t1, t2) = log2

P (t1, t2)

P (t1)P (t2)
(17)

where t1 is a term from q, and t2 is a bidded term from
the ad a. P (t) is the probability that term t appears in the
query log, and P (t1, t2) is the probability that terms t1 and
t2 occur in the same query.

We form the pairs of t1 and t2 by extracting the query
terms and the bidded terms of the ad. We only consider pairs
of terms consisting of distinct terms with at least one letter.
For each pair (q, a) we use two features: the average PMI
and the maximum PMI, denoted by AvePMI and MaxPMI,
respectively.

4.3.2 χ2 Statistic
Another measure of association between terms is the χ2

statistic, which is computed with respect to the occurrence
in a query log of terms from a query, and the bidded terms
of an ad:

χ
2 =

|L|(o11o22 − o12o21)
2

(o11 + o12)(o11 + o21)(o12 + o22)(o21 + o22)
(18)

where |L| is the number of queries in the query log, and
oij are defined in Table 2. For example o11 stands for the
number of queries in the log, which contain both terms t1
and t2. Similarly, o12 stands for the number of queries in
the log, in which term t2 occurs but term t1 does not. We
compute the χ2 statistic for the same pairs of terms on which
we compute the PMI features. Then, for each query-ad pair,
we count the number of term pairs that have a χ2 higher
than 95% of all the computed χ2 values.

An overview of the features we use is shown in Table 1. All
feature values were normalized by column across the entire
dataset with a z−score, in order to have zero mean and unit
standard deviation, thus each feature xi was standardized

t1 ¬t1
t2 o11 o12

¬t2 o21 o22

Table 2. Definition of oij for the calculation of the χ2 statistic
in Equation 18.

Part Development size Test size

1 1358 1445
2 1517 1369
3 1400 1488
4 1408 1514
5 1410 1329

Table 3. The number of blocks in each of the development
and test partitions of the data.

as:

z =
xi − µi

σi

. (19)

In addition we augmented each data vector with a bias fea-
ture which has a value of one for every example, and serves
as a prior on the response variable.

Before continuing, it is important to observe that all the
features we described in this section can be computed effi-
ciently. For example, the word overlap and cosine similarity
features can be computed online, when a user query is re-
ceived. The correlation features can also be computed online
efficiently by using a look-up table with word co-occurrence
information for pairs of words.

5. EXPERIMENTAL SETUP
We split the dataset into one training set, 5 development

sets and 5 test sets, so that all the blocks for a given query
are in the same set. The exact number of blocks for each
of the development and test sets is given in Table 3. The
training set consists of 109,560 blocks.

A ranking algorithm produces a score for each query-ad
pair. The ads are ranked according to this score. Because of
the way the data is constructed to account for the relative
position of clicks, each block has only one click associated
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Classification Ranking Regression
Feature set Prec at 1 MRR Prec at 1 MRR Prec at 1 MRR

B 0.322 0.582 ±0.306 0.333 0.590 ±0.307 0.328 0.585 ±0.307
BO 0.319 0.578⋆ ±0.306 0.352 0.602⋆ ±0.310 0.343 0.596⋆ ±0.309
BF 0.341 0.593⋆ ±0.309 0.347 0.597⋆ ±0.310 0.374 0.615⋆ ±0.314
BFO 0.357 0.605⋆ ±0.311 0.357 0.605⋆ ±0.311 0.371 0.614⋆ ±0.313
BFOP 0.357 0.604⋆ ±0.311 0.359 0.606⋆ ±0.311 0.374 0.617⋆ ±0.313
BFOC 0.351 0.601⋆† ±0.310 0.364 0.610⋆† ±0.311 0.381 0.619⋆† ±0.315
BFOCP 0.360 0.606⋆ ±0.311 0.363 0.609⋆ ±0.311 0.388 0.624⋆† ±0.315

Table 4. The results for classification, ranking and regression, computed over all trials. The best result is indicated in bold. Results
that are statistically significant with respect to the baseline are indicated with a star. Results indicated with a dagger are statistically
significant with respect to the features B + F + O. The results for precision at one were not tested for statistical significance.

Classification Ranking Regression
Feature set Prec at 1 MRR Prec at 1 MRR Prec at 1 MRR

B 0.322 ±0.008 0.582 ±0.003 0.333 ±0.014 0.590 ±0.006 0.331 ±0.020 0.586 ±0.012
BO 0.339 ±0.020 0.591 ±0.012 0.352 ±0.010 0.602 ±0.005 0.351 ±0.016 0.600 ±0.011
BF 0.340 ±0.016 0.592 ±0.007 0.345 ±0.007 0.596 ±0.004 0.368 ±0.013 0.611 ±0.007
BFO 0.356 ±0.007 0.604 ±0.004 0.359 ±0.006 0.605 ±0.003 0.375 ±0.016 0.616 ±0.008
BFOP 0.359 ±0.008 0.606 ±0.005 0.361 ±0.010 0.607 ±0.007 0.372 ±0.015 0.614 ±0.008
BFOC 0.350 ±0.011 0.600 ±0.009 0.365 ±0.007 0.611 ±0.003 0.381 ±0.010 0.619 ±0.005
BFOCP 0.357 ±0.014 0.605 ±0.008 0.364 ±0.006 0.609 ±0.003 0.387 ± 0.009 0.622 ±0.004

Table 5. The average of five trials, for classification, ranking and regression. The standard deviation refers to the 5 trials, not the
standard deviation within a given trial. The best result is shown in bold.

with it. For this reason we evaluate the precision at rank
one, which tells us how many clicked ads were placed in the
first position by the ranker, and the mean reciprocal rank,
which tells us the average rank of the clicked ad in the output
of the ranker. The mean reciprocal rank is computed as:

MRR =
1

n

n
X

i=1

1

ranki

(20)

where ranki is the rank of the clicked ad according to the
ranking function score and n is the total number of blocks.
The MRR score gives an indication of how far on average
the ranker’s guess is in the ranked list, thus providing a
smoother measure than precision at one.

5.1 Model selection
All adjustable parameters of the learning models were

fixed on the development datasets. The best values were
selected by monitoring the average accuracy over the 5 de-
velopment folds, the optimal values on development were
used on the evaluation set. We trained all models with a
stochastic protocol, choosing a training instance at random
without replacement: a block for the ranking case, a single
pattern for the classification and multilayer models.

In the classification case we set the parameters T and τ .
We tried three values for τ1, 1, 10 and 100, and found 100
to give the best results. As for the number of iterations, we
found that all models (not only in classification) tended to
converge quickly, rarely requiring more than 20 iterations to
find the best results.

In the ranking model, in addition to the number of iter-
ations T we optimize the positive learning margin τ . We
obtained the best results with the value τ = 1, which we
used in all experiments with ranking perceptron.

The multilayer model has a number of adjustable param-
eters, some of the parameters were kept with default values;

e.g., the sigmoid parameter a = 1.716 [8]. Following [8]
we initialized the network weights for the hidden-to-output
units uniformly at random in the interval − 1√

(nH)
< α2

i <

1√
(nH)

, the input-to-hidden weights were initialized ran-

domly in the interval − 1√
(d)

< α2
ij < 1√

(d)
. On the de-

velopment data we found that hidden layers with 50 units,
and η = 0.01, produced fast training and stable results,
we kept these values fixed on all experiments involving the
multilayer model. The number of iterations was set on the
development set, running a maximum of 50 iterations2.

6. RESULTS
The baseline model has only one feature, the cosine sim-

ilarity between the ad and the query with tf − idf weights.
Table 4 shows the results for classification, ranking, and mul-
tilayer regression for each of the five test sets concatenated.
That is, for the five test folds evaluated as one dataset, in or-
der to compute the significance of the mean reciprocal rank
results. For mean reciprocal rank we used a paired t-test.
Results indicated with a star are significant at the p < 0.05
level with respect to the baseline. Most of the significant
results are significant at the p < 0.01 level with respect to
the baseline. The precision at one results were not tested
for statistical significance. The significance for this metric is
not computed because it is not appropriate for binary data.

We see that multilayer regression outperforms both clas-
sification and ranking, and further that the correlation fea-
tures are a significant improvement over the other models.
For one third of the examples in the evaluation, the predic-
tor correctly identifies that the first result was clicked, and
an MRR of 0.60 indicates that on average the clicked result
was between rank one and rank two.

2One full iteration of the MLP model takes about 10 seconds
on a desktop machine.
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Although the standard deviation is high, around 0.3 for
each model, this is to be expected because MRR can take
values of 1, 0.5, 0.34, 0.25, 0.20, 0.18, etc. An average MRR
of 0.6 indicates that most clicked ads were at positions 1, 2
and 3. If half of the results had an MRR of 1, and the other
half had an MRR of 0.34, the mean would be 0.67, resulting
in a standard deviation of 0.34. Thus the high standard
deviation in this case is an artifact of the metric.

We also compute the averages and standard deviation
across the five test sets, shown in Table 5. As indicated by
the standard deviation for the trials, the method is robust
to changes in the data set, even for precision at 1 which is
in general a much less stable evaluation metric. As already
shown for content match [25, 19, 6] weighting the similarity
of each component separately and adding features about the
degree of overlapping between query and ad improve signifi-
cantly over the baseline. The best result for each model are
achieved adding the term correlation features.

6.1 Discussion
Sponsored search click data is noisy, possibly more than

search clicks. People, and fraudulent software, might click
on ads for reasons that have nothing to do with topical sim-
ilarity or relevance. While it is not obvious that we can
learn to distinguish relevant from non-relevant ads based
on a user click, we find that there is enough signal in the
clicks that, with a simple method for unbiasing the rank of
the click [13], it is possible to learn and carry out mean-
ingful evaluation without the need for editorial judgments
produced manually, or complex estimation of click-through
rates. Arguably, evaluating a classifier on the task of identi-
fying the ad which will be clicked is more directly related to
the task of successfully ranking ads then guessing indirectly
the relevance assigned by humans. However, since the two
are strongly related it makes sense to investigate their inter-
action, in particular in learning. An interesting question is
if, in the presence of both types of information, it might be
beneficial to solve both tasks at the same time. This type
of approach in fact fits well the artificial neural net learning
methods [8] and would provide an interesting extension of
the multilayer model.

The non-linear multilayer perceptron outperforms both
linear models. Interestingly, both linear models when using
also the correlation features seem to perform better when
only use one (PMI or chi-squared) rather than both, (see Ta-
ble 5). This might depend on the fact that the features are
strongly correlated and the linear classifier does not posses
enough information to prefer one over the other in case of
disagreements. Thus it finds a better solution by trusting
always one over the other. The non-linear model instead
has enough expressive power to capture subtler interactions
between features and achieves the best results using both
features. Another interesting aspect is that, although there
are only two possible rankings, and thus the problem boils
down to a binary classification task, the linear ranking per-
ceptron outperforms the simpler classifier. The difference
seems to lie in the way training is performed, by considering
pairwise of patterns. Previous work on learning to rank [3]
has proposed methods for training on pairs of patterns in
multilayer architectures. This is a natural direction for fur-
ther investigation of this type of model.

In terms of the features, even the simple word overlap fea-
tures produced statistically significant results over the base-

line model. Since we are effectively re-ranking ad candidates
retrieved by a retrieval system which we treat as a black box,
candidates are biased by the initial ad placement algorithm,
and it is possible that the initial retrieval system preferred
ads with a high degree of lexical overlap with the query,
and the word overlap features provided a filter for those
ads. The correlation features, which capture related terms
rather than matching terms, added a significant amount of
discriminative information. Such features are particularly
promising because they are effectively language-independent
and knowledge free. Similar statistics can be extracted from
many resources simple to compile, or even generated by a
search engine. Overall these findings suggest both that rele-
vant ads contain words related to the query, and that related
terms can be captured efficiently with correlation measures
such as pointwise mutual information and the chi-squared
statistic. There are several opportunities for further inves-
tigation of this type of features, for example by machine
translation modeling [23].

One limitation of the current way of modeling click data is
that “relevance” judgments induced by the logs are strictly
binary. We have seen that using pairwise information is
useful in training and it may be desirable to generate more
complex multi-valued feedback. Joachims et al. [14] pro-
posed manipulating the presentation of candidates to users
by swapping the order of contiguous candidates to obtain
likelihood ratios. An interesting question is how such infor-
mation might be automatically extracted from query logs.

7. RELATED WORK
Sponsored search can be thought of as a document re-

trieval problem, where the ads are the “documents” to be
retrieved given a query. As a retrieval problem, sponsored
search is difficult because ad materials contain very few
terms. Because the language of the ads is so sparse, the
vocabulary mismatch problem is even more critical. Jones
et al. [15] approach the problem of vocabulary mismatch by
generating multiple rewrites of queries to incorporate related
terms. In their system, related terms are derived from user
sessions in the query logs, where query rewrites have been
identified. The set of possible rewrites is constrained to con-
tain only terms that are found in the database of advertising
keywords. They use a machine-learned ranking to determine
the most relevant rewrite to match against the ads. In a fol-
low on to this work, Zhang et al. [35] use active learning
to select the examples to use in training machine-learned
ranking. Both systems were evaluated on manual editorial
judgments. By contrast our system uses click data both for
training and evaluating the system. Furthermore, our mod-
els learn a ranking over the ads given a query directly, rather
than learning a ranking over query rewrites.

Advertisements are represented in part by their keywords.
In one model of Online advertising, ads are matched to
queries based on the keywords, and advertisers bid for the
right to use the keywords to represent their product. So
a related task is keyword suggestion, which can be applied
to sponsored search or to its sister technology, contextual
advertising, which places an ad in a Web page based on
the similarity between the ad and the Web page content.
Carrasco et al. [4] approach the problem of keyword sugges-
tion by clustering bi-partite advertiser-keyword graphs. Yih
et al. [33] extract keywords from Web pages using features
such as the term frequency, the inverse document frequency,
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and the presence of terms in the query logs. They stop short
of using the keywords in an application.

Although we do not consider economic factors in our work,
implicit in the task of ranking ads to improve the relevance
at the top of the list, is the desire to increase user clicks.
Feng et al. [9] investigate the effects of four different rank-
ing mechanisms for advertisements in sponsored search on
revenue. Two of the mechanisms depend wholly on the bid
price of the terms. Of the remaining two, one proposes
ranking ads by their expected clickthrough rate, and the
other by a function of the bid price and the expected click-
through rate. The focus of this work is on the economic
impact of the advertising placement mechanism, and uses
a simulated environment which treats as a variable the de-
gree of correlation between the advertiser’s willingness to
pay for advertising slots, and the amount of traffic they at-
tract. They find that ranking ads by a function of the bid
price and the clickthrough rate outperforms other ranking
mechanisms. They further explore using the clickthrough
rate to dynamically update the ranking mechanism. They
investigate two weighting schemes for user clicks. In the un-
weighted scheme, an ad’s clickscore is increased by 1 every
time it is clicked. In the weighted scheme the ad’s clickscore
is increased by δi where i is the rank of the clicked ad, which
has the effect of damping the scores of clicks in the top po-
sitions, and boosting the scores of ads in lower positions,
which is one way of addressing the positional bias in user
clicks. There are several key differences between this work
and ours. First, the evaluation metric in Feng et al. is
the expected revenue, whereas we evaluate the relevance of
the ads. The work by Feng et al. is done in a simulated
environment, whereas ours is performed on data from the
search engine. They use the clickthrough data as a measure
of absolute relevance, rather than as a measure of relevance
relative to other ads that were not clicked. Finally, and most
importantly, they are assessing the intrinsic relevance of an
ad, independent of the context of the user’s query.

Contextual advertising is a sister technology to sponsored
search, and many of the techniques used to place ads in Web
pages may be used to place ads in response to a user’s query.
As with sponsored search, contextual advertising is usually
a pay-per-click model, and the ad representations are similar
in both sponsored search and contextual advertising. The
primary difference is that rather than matching an ad to a
query, the system matches the ad to a Web page.

Contextual advertising also suffers from the vocabulary
mismatch problem. To compensate for this, Ribeiro-Neto et
al. [25] augment the representation of the target page using
additional Web pages. As a follow-on to this work, Lacerda
et al. [19] select ranking functions using genetic program-
ming, maximizing the average precision on the training data.
Broder et al. [2] use a semantic taxonomy to find topically
similar terms, to facilitate the match between an ad and a
Web page.

The current paper is a follow-on to work in contextual
advertising, presented in [6] and [23]. Key differences in
the current work are the use of click data in place of human
edited relevance judgments, both for learning a ranking func-
tion and for evaluation, the application to sponsored search
rather than content match, and the use of several different
types of classifiers.

Joachims [13] proposes that user clicks can be used to
learn ranking functions for search engine results by consid-

ering that a user click is an indicator of relative relevance.
That is, a click at rank j indicates that the document at
rank j is more relevant than unclicked documents that pre-
ceded it in the ranked list. We adopt this ranking mecha-
nism directly in our work, as described in Sections 2 and 5,
however in addition to using it for training, we also use this
ranking mechanism for evaluation. Also, Joachims [13] is
the first in a series of work investigating using implicit user
feedback, such as user clicks, for learning ranking functions.
An overview of using implicit user feedback as surrogates for
editorial relevance judgments can be found in [16].

8. CONCLUSION
In this paper we investigated an approach to learning

and evaluating sponsored search ranking systems based ex-
clusively on click-data and a simple conservative unbiasing
method, which fits together well with online learning pro-
tocols. In particular, we focused on modeling the textual
content which is a fundamental aspect of the ad selection
problem. We found empirically that our approach produces
consistent results across different learning models, of vary-
ing complexity, and across different feature representations.
We found that learning on pairs of patterns is beneficial and
that multilayer perceptrons provide a competitive platform
for ranking from noisy data and compact feature represen-
tations. We also showed how simple and efficient semantic
correlation features provide a valuable source of discrimina-
tive information in a complex task such as sponsored search,
characterized by sparse textual descriptions. Interesting av-
enues for further research might involve other ranking tasks
where objects have small textual descriptions, such as im-
age and multimedia retrieval, more sophisticated multi-layer
ranking functions trained on pairwise preferences, and other
variants of the simple unbiasing method used here.
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